PHYSICAL REVIEW E

VOLUME 48, NUMBER 2

AUGUST 1993

Weighted-density-functional theory of electrode-electrolyte interface:
Beyond the primitive model

Chandra N. Patra and Swapan K. Ghosh
Heavy Water Division, Bhabha Atomic Research Centre, Bombay 400085, India
(Received 23 December 1992; revised manuscript received 19 April 1993)

A weighted-density-functional theory is developed for an inhomogeneous electrolyte solution near a
planar charged electrode using a nonprimitive three-component model consisting of one neutral and two
charged hard-sphere components representing the solvent and the ions, respectively. Both the hard-
sphere and electrical contributions to the one-particle correlation function are obtained nonperturbative-
ly by evaluating the direct-correlation functions of the corresponding uniform system using appropriate
effective densities. Numerical results on the density profiles of the ions and the solvent molecules and
also the mean electrostatic potential near the electrode surface at several surface-charge densities are
presented to obtain insight into the layering and charge-inversion phenomena occurring at the interface.

PACS number(s): 61.20.Gy, 61.20.Ne, 68.45.Ax, 82.45.+z

I. INTRODUCTION

Density-functional theory (DFT) has been highly suc-
cessful in predicting the equilibrium properties of nonuni-
form fluids [1-3]. Although most of the earlier studies
have been concerned with neutral liquids [2,3], in recent
years there has been growing interest in applying DFT to
nonuniform ionic liquids [4-8].

An inhomogeneous ionic distribution arises in many
electrochemical, colloidal, and biological phenomena. In
an electrode-electrolyte solution interface, for example,
the electric field produced by the surface charge leads to
an inhomogeneous distribution of ions producing an elec-
tric double layer [9] (EDL). Theoretical studies of EDL
are mostly based on models, the simplest one being the
restricted primitive model (RPM), where the ions of the
electrolyte are assumed to be charged hard spheres of
equal diameter, and the solvent is treated as a continuum
isotropic dielectric medium. The planar electrode surface
is considered to be a polarizable and impenetrable hard
wall carrying a uniform surface-charge density.

The EDL, however, is actually a three-component sys-
tem [7], where the molecular nature of the solvent plays
an important role in determining the distribution of the
ions near the electrode surface and thus the structure of
the EDL. Our objective here is to develop a density-
functional theory of an inhomogeneous mixture of posi-
tive and negative ions (treated as charged hard spheres as
in the RPM) and the solvent molecules (represented as
neutral hard spheres) and thus obtain the structure of
EDL corresponding to a more realistic three-component
model [7]. A consideration of the molecular nature of the
solvent is crucial for explaining many experimental obser-
vations [10]. For example, the oscillation of the force be-
tween two surfaces immersed in an electrolyte solution
with a change in the distance between them, has been at-
tributed to the solvent structure [11] and cannot be ex-
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plained using a continuum model of the solvent.

The central theme in a density-functional approach is
that the grand potential for the system is expressible in
terms of its single-particle density and attains a minimum
value for the true equilibrium density distribution. Be-
cause of the lack of knowledge concerning the general
functional form of the grand potential in terms of the
density in general, approximations are, however, essen-
tial. In some cases the functional form is known for a
uniform system and this knowledge often serves as a basis
for constructing the functional for the corresponding
nonuniform system, using a perturbative or nonperturba-
tive approach.

The perturbative approach usually involves a second-
order-functional Taylor expansion in density inhomo-
geneity and is suitable only for weakly inhomogeneous
systems. In a nonperturbative procedure such as a
weighted-density approach (WDA), the first-order corre-
lation function (or other analogous quantity) for the
nonuniform fluid is approximated locally by that of the
corresponding uniform fluid of an effective density, ob-
tained from a suitable weighted average of the actual in-
homogeneous density distribution. In a recent work [8],
we have generalized and extended the WDA approach of
Curtin, Denton, and Ashcroft (CDA) [2,3,12] of neutral
liquids to the case of ionic liquids and thus obtained the
structure of EDL within the framework of RPM.

In the present work, we extend it further to a mixture
of charged and neutral hard spheres and develop a fully
nonperturbative-weighted-density approach to the DFT
of a nonuniform electrolyte solution where the molecular
nature of the solvent is explicitly introduced and apply it
to study the structure of EDL corresponding to a
nonprimitive model. Earlier works on DFT of EDL have
mostly used a combination of WDA and the perturbative
schemes. In recent works, Davis and co-workers [5,7]
have evaluated the ionic part through second-order per-
turbation expansion around the bulk density although the
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Tarazona [13] scheme of weighted averaging has been
used to obtain the hard-sphere contribution to the corre-
lation function. Kierlik and Rosinberg [6] have also con-
sidered second-order perturbation expansion around the
bulk density for the electrical contribution but their
nonlocal-weighted-density approach for the hard-sphere
part employs interesting density-independent weight
functions. Groot [4,14,15], however, determined an
effective density for the ions considering both hard-
sphere and ionic contributions, which is used as a
zeroth-order density for carrying out a perturbation ex-
pansion. In what follows, we first develop the theory in
Sec. II proposing the nonperturbative-weighted-density-
functional schemes for density calculation and present
the numerical results in Sec. III. We offer a few conclud-
ing remarks in Sec. IV.
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where B=(ky 7)™}, kp being the Boltzmann constant,
and A,, u,(r), and u, represent, respectively, the de Bro-
glie wavelength, external potential, and chemical poten-
tial corresponding to the ath component and € is the
dielectric constant of the medium.

The first term on the right-hand side (rhs) of Eq. (1)
represents the ideal-gas contribution to the free energy.
The excess free-energy contributions FiS[{p,}] and
F&[{p,}] originate from solely mutual hard-sphere in-
teractions and electrical contributions, respectively, the
latter including the coupling of Coulombic and hard-
sphere interactions, but excluding the direct Coulomb
part included in the second term on the rhs of Eq. (1).
The first- and second-order correlation functions defined
as their functional derivatives, given by
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II. THEORY

We consider an electrolyte solution consisting of two
ionic components and a neutral solvent, with an inhomo-
geneous density distribution due to the influence of an
external potential arising from a planar charged electrode
surface. The three species are considered to be hard
spheres with the hard-sphere diameter, charge, and densi-
ty distribution of the component a denoted by d,, q,,
and p,(r), respectively. In our notation a=0 refers to
the solvent (i.e., g, =0) while a=1 and 2 denote the posi-
tive and negative ions, respectively. For simplicity we
consider only symmetric electrolytes, i.e., g;=—gq, and
also assume that the ions have the same hard-sphere di-
ameters, i.e., d; =d,. The grand potential functional for
this system at temperature T can be written as

S [ drpr){In[p,(r )x3]—1}+—22qaqﬁf [ dridrp,(r)pgr,) /|1 —1,
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and similar expressions for the electrical part, play im-
portant roles in the DFT of liquids.

For the planar electric double layer under considera-
tion, the density variation is along the (perpendicular) z
direction, and the external potential u ,(z) consists [9] of
Coulomb potential due to the surface-charge density o
and the hard-sphere potential u5(z) where the latter is
infinite for z <d, /2 and zero otherwise.

The true equilibrium density distribution of each com-
ponent corresponds to the minimum of the grand poten-
tial with respect to the component densities and is deter-
mined by the equation

J D+ {p D) @)

where ¥(z), the mean electrostatic potential due to the external surface charge and the internal ionic distribution,
satisfies the corresponding Poisson equation in one dimension and can be written as

Y(z)=—(4mo /e€)z — (4 /€)z fozdz’zqapa(z’)—(47r/e)fwdz’z' S q.p.L2") (5)
a a
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which can be represented in other forms using the elec-
troneutrality condition given by
fowdz'zqapa(z’)+a=0 i (6)
a
Writing Eq. (4) for the bulk-phase density p, of com-

ponent a and combining with the same equation for
Po(2), one can write

—Bg W) +c PP (5;[{p,} ]
+e P [{pad D
—c (P D= Lped D, D

Po{2)=pgexp(

which determines the density in the region z >d, /2. For
z <d, /2, however, the density vanishes, i.e., p,(z)=0

The density proﬁles of the ions as well as the solvent
can be calculated using Eq. (7) once the correlation func-
tions ¢ VS and ¢ for a nonuniform density distribu-
tion is known In the absence of exact expressions for
these quantities, we propose an approximation scheme
based on the knowledge of the same for a uniform mix-
ture of charged and neutral hard spheres within the
framework of WDA, according to which, ¢'V(p(r))
=’E(”(ﬁ(r)), where ¢V, the correlation function for the
corresponding uniform system, is evaluated at an effective
density p, a weighted average of the actual nonuniform
density of the system.

For a uniform mixture of charged and neutral hard
spheres, analytical expressions are available for both
Z’mHS(rl,rz) and © 2’el(rl,rz) where the electrical part

vanishes when either a or B refers to the neutral
component. The corresponding first-order quantities
S [{p%}]) and T gMNr;[(pd)]) are obtained
through functional mtegratlon of the second-order corre-
lation functxons ¢ Z™ and . One thus have
~le)—23€ «p> valid for hard-sphere as well as electrical
contributions.

We propose to obtain both the first-order correlation
functions ¢’MS and ¢ in Eq. (7) for the nonuniform
system by evaluating their homogeneous counterpart
components at suitable effective densities, viz.,

eI (55 [{p} =2 (P (r)
2
= 3 ¢ UES(pA(r) , (8a)
2
(1 e1 (r; [{pa} z el( (B)(r ), (8b)

for a=0,1,2, where the effective densities py {@(r) and
7 (1) are defined as the weighted averages

7 (r) fdrpﬁ wiB(r—r;piEr)  Ya)
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The phys1ca1 interpretations of the effective densities
pd(r) and p{{(r) are simple. Thus, the contribution to
the hard- sphere part of the one-particle correlation func-
tion (corresponding to the @ component) of a nonuniform
fluid is assumed to be given by that of a corresponding
uniform fluid of effective total density 5 {&(r). Similarly,
7(r) is the effective total density of a locally uniform
and locally neutral fluid such that the electrical part of
the one-particle correlation function c;} el arising from
correlation with particles of the ath component, is the
same as that of the actual nonuniform and locally non-
neutral fluid. The correspondence to uniform fluids is
done at every point separately and hence the weighted
densities are clearly position dependent. It may be noted
that as implied by Eq. (8a), the contributions to the
hard-sphere correlation function c¢{V’HS is obtained by
summing all three components € “)HS for 3=0,1,2 evalu-
ated at the same effective den51ty p Hs(r) For the electri-
cal part, ¢{’®!, however, for a nonuniform density which
is locally non- neutral (which is the case when the external
potential acting on the positive and negative ions differ),
the two components ¢ ”B)el for B=1,2 are evaluated at two
different effective densities 5}(r) and g ?(r), respective-
ly [see Eq. (8b)]. This clearly leads to a nonzero contribu-
tion to the quantity ¢'’®! through WDA of Eq. (8b).

We now derive explicit expressions for the weight func-
tions in the spirit of the CDA approach, i.e., by demand-
ing that the first functional derivatives of Egs. (8) with
respect to the densities p, or pgin the limit of homogene-
ous density provide the exact appropriate two-particle
correlation functions. The resulting expressions for the

weight functions wgg and w‘;IB are given by
¢ HS(|p—p'|. 5)
Hg(|r—r'|;ﬁ)_—“‘—“—:{;—p , (10a)
(e ™ (p)]
op
lfé(2)el(|r_r'|’p)
wis(lr—r'l;p)="—" (10b)
o (€ aa”(P)]
9p
It is clear that whis =wps and whs =wh if d, —d . and
dg=dg. Similarly, elﬁ—w Ba and wfxla =wB,3 for

a,B=1,2. Other components of waﬁ involving the sol-
vent component (a or 8=0) vanish. Equation (10b) cor-
responds to we, = —waﬁ, and clearly 1ndlcates that
weight functions waﬁ integrate to 4, while waB integrates
to unity. The expressions for the weighted density g '
can thus be rewritten as
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PEO=p R0+ [drwd, (Ir—r' ;5P pa(r) —pgr)], (11)

with a similar expression for p B)(r) obtained easily by interchanging a and B, for a,B=

Equations (7)-(10) thus prov1de a set of equations for calculating the density dlstrlbutlon Apart from this fully non-
perturbative approach, we propose another partially perturbative scheme in the spirit of the recent work of Davis and
co-workers [5,7] where ¢ V"8 (r;[{p,}]) is calculated through WDA using Eq. (8a) with p{(r) of Eq. (9a) but the elec-
trical part (for a=1,2) is evaluated perturbatlvely, i.e., one employs [instead of Eq. (8b)] the equation

c N[ {p ) D=0 LN {p2} )+ 2 fdr'aﬁ,?‘(lr—r'l;{pg})[pB(r')—pg]. (12)

The present prescription differs from that of Tang et al. [5] in that the weight function here corresponds to the CDA
approach, rather than the Tarazona approaches [13] used by them.

The analytical expressions for the correlation functions ¢ Z"S and @ iZZB’CI for a uniform mixture of charged and neutral
hard spheres are obtainable from the works of Lebowitz [16] and Ashcroft and Langreth [17]. The main expressions
are

cOS(lr—r'|;{p%))=a,+b,|lr—r'|+d|r—1'|?, (13)
for [r—r'| <d, and zero otherwise, while
¢ BZBr—r'l;{p%})=a, +O(R)[bR*+4AR*+dR*]/|[r—1'| , (14)

for |[r—r'| <d,g and zero otherwise. Here © denotes the Heaviside step function, 7&=|da—dB|/2, R=|r—r'|—A,
dz=(d,+dg)/2, and the y component refers to the component of smaller diameter. The exact expressions of the
coefficients a,, b, b, and d in terms of the bulk packing fraction, concentration ratio, and diameter ratio are given in
the work of Ashcroft and Langreth [17]. Similarly, for the electrical part [18] (assuming d, =d, ), one has

e B r—r';{p3})=—(Bgags/€)(2B/d,)—(B/d )It—r'|—1/It—r'|], (15)

for [r—r'| <d, and zero otherwise, where B =[x +1—(1+2x)1/2]/x, and x =d,[(47B/€)3 p.9%1'/*>. Equation (15)
is valid for a,B— 1,2 and for either a or =0, one has ¢ (2)e1_.0

Using these expressions for ¢ azﬁ)’ on functional 1ntegrat10n one obtains explicit expressions for ‘c“fI‘B) Also, since the
density depends only on the z coordinate, one can calculate the effective densities as

=f0wdz’p(z’)w(|z —z'[;p(2)), (16)
with the planar averaged weight functions @ ,4( |z —z'|;p(2)) given by the simplified expressions
wgg (2)=27[(a, /2)d s —2>)+(b/3)d}, +dAd} +(d /5)d;
+6(z =) {(b/3)(z =AY +Ad(z —M)*+(d /5)(z —A)*} |[4m(ma,, +nb +pd)] ", (17a)
for 0 <z <d g and zero otherwise. Similarly,
ws(z)=27[(Bgoqp/€){(d,—2)—(B/d Nd%—2z*)+ LB /d )(d}—z%)}]
X(47[(Bgoqp/€){1/2—(B/3d,)+(B*/4d.)} ]!, (17b)

for 0 <z <d, and zero otherwise. Here the quantities m, III. RESULTS AND DISCUSSION

n, and p are given b . . .
p & y We have employed iterative numerical methods to

m —%u3 s (18a) solve the nonlinear integral equations [Eq. (7)] to obtain
o a3 - . the density profiles of the two ions and the solvent. We
n=qu"—%uv+iutvi—LHv*, (18b)  have used a simple discretization scheme with a uniform
L5 . 3 L6 mesh and trapezoidal rule for numerical integration. The

p=4v} Su Fu o tutn? U “ +i }+§u initial trial density for the ions was the modified Guoy-
— 4% + 3uty— 4y 334 1y v4_%v6 , (18¢) Chapman (MGC) density for the EDL while for the sol-

vent the average bulk density has been used as the initial
where u =3[(d, /d,)+1]and v =1[(d,/d,)—1]. With input. For convenience, various quantities are
these expressions for cﬁfﬁ) $ and T ‘Zﬁ’el, the present transformed to the corresponding dimensionless forms.
prescription thus provides a means to the calculation of ~ Thus the distance (z*=z/d,) is measured in units of the
the inhomogeneous density profiles of the ions as well as ~ hard-sphere diameter, which is chosen here as
the solvent molecules in the electrode-electrolyte inter- dy=d,=d,=4.25 A. The density quantities are ex-
face region. pressed as p%=(p,d3). The reduced surface-charge den-
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sity o*=(od?/e) and the reduced electrostatic potential
* =Pey(z), where e is the magnitude of the electronic
charge. The calculations are performed for a tempera-
ture of 298 K and €=78.5. The convergence criterion
chosen is that for N mesh points, the norm defined as
[Za Zillply V() —pa(2)1/p3)? /3N T2 is a small
number (e.g., < 107°) after the nth iteration. The accura-
cy to which the electroneutrality condition is satisfied is
also checked by evaluating the left-hand side (lhs) of Eq.
(6).

The reduced bulk density for the solvent has been fixed
at pg*=0.8 and different concentrations for the ions
(0.1M, 1M, and 2M for 1:1 and 0.5M for 2:2 electrolyte)
have been chosen in order to study the effect of bulk con-
centration of the ions. The effect of the surface-charge
density is also studied by carrying out the calculations at
different values of o*. Since the results of computer
simulation for this model electrolyte solution are not
available, we have compared our calculated results with
those obtained by the same scheme but by considering
the solvent to be merely a continuous dielectric medium.
The comparison of the results thus obtained for the
molecular solvent model (MSM) and the continuum-
solvent model (CSM) using the same method provides in-
sight into how the exclusion of the ions is caused by the
solvent molecules.

It is to be noted that throughout this work, the density
plots correspond to the plots of [p,(z)/p%], i.e., density
relative to the bulk density of the corresponding com-
ponent. The actual reduced densities can be obtained by
multiplication with p3*=0.8 for the solvent and
po¥=0.046 24 (for ¢ =1M) for the ions (a=1,2).

We have plotted the density profiles of the two ions
and the solvent in dimensionless forms [p,(z)/p%] for
¢ =0.1M of a 1:1 electrolyte and o*=0.10 and 0.60 in
Figs. 1 and 2, respectively. The layering effect is very
predominant, with density oscillations being damped at
larger distance. At very low o* (=0.10), even co-ions are
found at z*=0.5, but as o * increases, co-ions are almost
completely excluded from the first layer. This is a direct
consequence of the increase of electrostatic interaction.
Another important effect is the increase in the density of
the first minimum of the counterion density at z*=1.0.
For CSM, there is an increase in counterion density near
the surface as o is increased, although only monotonic
behavior is observed for the density.

As the concentration is increased, e.g., at ¢ = 1M, the
density plot of Fig. 3 for 0*=0.70 clearly reveals that
apart from the density oscillation which is a layering
effect due to hard-sphere exclusion, another important
effect of charge inversion sets in beyond the first two lay-
ers of the counterions and the solvent. The co-ions are
almost completely excluded from the first layer at such
higher values of 0*. The tendency of merging of the first
two layers of the counterion at higher values of o* how-
ever is not observed. In the CSM result, a weak structure
in counterion density due to layering effect is observed at
z*=1.5, but the charge inversion does not appear.

At a still higher concentration (¢ =2M and
0*=0.39602), charge inversion is observed (see Fig. 4)
prior to the second layer itself. For the CSM result, a less
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FIG. 1. Reduced density profiles for a 1:1 electrolyte at
¢=0.1M and 0*=0.10. — — —, counterion density using
MSM; (—-—-.—.), co-ion density using MSM; ( ), solvent
density using MSM; (—--—--—-+), counterion (upper curve)
and co-ion (lower curve) densities using CSM.

9.0 —

FIG. 2. Reduced density profiles for a 1:1 electrolyte at
¢=0.1M and 6*=0.60. Key same as in Fig. 1.
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FIG. 3. Reduced density profiles for a 1:1 electrolyte at
¢ =1M and 0*=0.70. Key same as in Fig. 1.

pronounced charge inversion is observed beyond the
second layer. For a 2:2 electrolyte, the charge inversion
is prominent for both MSM and CSM results even at a
moderate concentration (c =0.5M) (see Fig. 5 for
o*=0.1704) due to stronger electrostatic interaction.
The layering effects are consequences of hard-sphere
correlations leading to exclusions of ions or solvent mole-
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FIG. 4. Reduced density profiles for a 1:1 electrolyte at
¢ =2M and 0*=0.39602. Key same as in Fig. 1.
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FIG. 5. Reduced density profiles for a 2:2 electrolyte at
¢=0.5M and 0*=0.1704. Key same as in Fig. 1.

cules in different regions and thus appear through the
c¢'VHS and ¢V terms. The charge inversion, however, is
reflected in the mean electrostatic potential itself. Thus,
plots of ¥*(z) in Figs. 68 corresponding to the density
plots of Figs. 2—4, respectively, show clearly inversion of
¥*(z) in some region. Thus, although at low concentra-
tion (¢ =0.1M), the plot of ¥*(z) in Fig. 6 is monotonic,
at ¢ =1M (see Fig. 7), ¥*(z) changes sign and passes
through a minimum at negative value, and the depth has
been found to increase with increase in o*. For ¢ =2M
(1:1 electrolyte), ¥*(z) is negative near the surface itself
and becomes positive at larger distances (see Fig. 8). The
same trend is observed for even ¢ =0.5M for a 2:2 elec-
trolyte and the depth of the minima becomes greater as
o* increases. In all the potential plots, comparison is
made with the results of CSM, for which the potential in-
version is predicted only at higher concentration (¢ =2M)
for the 1:1 electrolyte (see Fig. 8) or moderate concentra-
tion (c =0.5M) for the 2:2 electrolyte while in other
cases, the potential is monotonic.

While so far we have discussed results from the pro-
posed (fully) nonperturbative scheme alone, we have also
carried out calculations for the partially perturbative
scheme where the electrical contribution is calculated us-
ing perturbation expression [Eq. (12) instead of Eq. (8b)].
These results for both MS and CSM are included in all
the potential plots and the trends are qualitatively almost
the same as those of the nonperturbative scheme, al-
though differences in the potential-inversion phenomena
are observed in a few cases. One result of density profiles
using this perturbative scheme corresponding to the
external parameters used for Fig. 3 is shown in Fig. 9.
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FIG. 6. mean electrostatic potential in dimensionless form
for a 1:1 electrolyte at ¢ =0.1M and o*=0.60. ( ), MSM
result; (—.—-—-.), CSM result; (— — —), MSM result (using
perturbation scheme).
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FIG. 7. Mean electrostatic potential in dimensionless form

for a 1:1 electrolyte at ¢ =1M and o* =0.70. ( ), MSM re-
sult; (— — —), CSM result; (e—+—*-¢), MSM result (using per-
turbation scheme); (—. —. — -), CSM result (using perturbation

scheme).
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FIG. 8. Mean electrostatic potential in dimensionless form
for a 1:1 electrolyte at ¢ =2M and o*=0.39602. Key same as
in Fig. 7.

FIG. 9. Reduced density profiles for a 1:1 electrolyte at

¢=1M and 0*=0.70. (— — —), counterion density using
MSM and perturbation scheme; (—-—.—-), co-ion density us-
ing MSM and perturbation scheme; ( ), solvent density us-
ing MSM and perturbation scheme; (— — —), counterior
(upper curve) and co-ion (lower curve) densities using CSM and
perturbation scheme; (—--—.- —-- ), counterion (upper curve)
and co-ion (lower curve) densities using CSM.




48 WEIGHTED-DENSITY-FUNCTIONAL THEORY OF ELECTRODE- . . . 1161

3.5 45
z/d,
FIG. 10. Weighted reduced density profiles of M§M of a 1:1
electrolyte at ¢ =1M and 0*=0.70. (——), ps’ for coun-
*
terions (a=2); (— — —), pu¥ for co-ions (@=1); (—-—-—- ),

ﬁ(h‘j]* for a=0, 1, or 2.

The densities obtained using this scheme for both CSM
and MSM are shown here along with the CSM results of
the fully nonperturbative scheme for comparison (note
that these last CSM results are included in Figs. 1-5).
The results are qualitatively similar although quantitative
details differ. The MSM with perturbation scheme is in
the spirit of the work of Tang, Scriven, and Davis [7]
differing only in the hard-sphere weight functions which
correspond to CDA here instead of Tarazona [5] as used
by them.

Since the effective density p, plays an important role in
the present theory, we have plotted 5 * (=pd3) profiles
of MSM in Fig. 10 for 0*=0.70 and ¢ =1M of a 1:1 elec-
trolyte. It is to be noted that in these plots the effective
densities are absolute and not relative to the correspond-
ing bulk densities. The structures in the profiles of g are

manifested in the oscillations of the calculated density
profiles of the solvent and the ions.

It may be noted that the oscillating density profiles ob-
served in the present three-component model have a
direct consequence on the experimental observation of os-
cillation in the force between two surfaces separated by
an electrolyte solution, as the distance between them is
varied. The force between the two electrode surfaces can
be expressed in terms of the contact density at the sur-
face. With increase in separation the contact density
shows the same oscillation as that in the midplane region
due to hard-sphere exclusion by the solvent. Thus it is
the oscillating density profile near the electrode surface as
studied here using MSM, which is responsible for the os-
cillating force between the electrode surfaces observed ex-
perimentally [10].

IV. CONCLUDING REMARKS

We have developed in this work a fully
nonperturbative-weighted-density approach to the
density-functional theory of an inhomogeneous ionic
solution, where the molecular nature of the solvent is tak-
en into account explicitly. The present work is essential-
ly a generalization and extension of our earlier work [8]
on a nonuniform ionic system using a continuum model
for the solvent. The present theory is applied to the
electrode-electrolyte interface using a nonprimitive model
of the electric double layer.

The present WDA evaluates the correlation-function
components of a nonuniform and locally non-neutral
electrolyte solution using the same components of a uni-
form and locally neutral electrolyte solution of suitable
density. While computer-simulation results for the
molecular solvent model are not available for compar-
ison, the layering effect and charge inversion predicted by
the present model when compared with the results of
continuum-solvent model provide considerable insight
into the exclusion and redistribution of the ions induced
by the solvent molecules. Insight has also been obtained
into the oscillations observed in the force between two
surfaces placed in an electrolyte solution, in terms of the
oscillatory density profiles of the present study incor-
porating the molecular nature of the solvent.
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